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Introduction

Ligands play a central role in coordination and organome-
tallic chemistry, and their steric and electronic properties
are crucial for determining and controlling the structures,
properties and functions of metal complexes. Considerable
efforts have been directed at quantifying these properties
(see, e.g., references [1–5]) to place ligand chemistry on a
rational footing. Such work has a range of potential applica-
tions—for example to facilitate the screening of metallo-
drugs and homogeneous catalysts, as well as the design of
new metal complexes tailored to specific applications in syn-
thesis and materials chemistry.

More generally, ligands are chemical entities that may be
described by an interesting mix of essentially intrinsic or in-
herent properties (connectivity, geometry, energy and elec-
tronic structure) of the “free” or pro-ligand and those that
emerge or are perturbed on complexation to the metal (in-
cluding conformation, geometry, charge distribution etc).
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Furthermore, when bound they confer properties on the
new entity formed, that is, the metal complex (e.g. solubility,
reactivity, structure). For example: the behavior, including
reactivity of the trifluoromethyl group, CF3, is markedly dif-
ferent when coordinated to a metal (M�CF3) than when
part of a fluorinated alkyl group (C�CF3); the conformation
of ethylenediamine (en, NH2(CH2)2NH2) is very much af-
fected by chelate coordination; the geometry of triphenyl-
phosphine (PPh3) is dependent on the Lewis acid to which it
is bound.[6] It is clearly more challenging to provide a suc-
cinct and robust quantitative description of ligands and their
properties (and those of their complexes), which is transfer-
able and chemically useful, than it is for other chemical sys-
tems that do not show such strongly context dependent be-
havior.

Here we consider the characteristics of a collection of
structured and validated knowledge on ligands and their
properties, both inherent and dependent—what might be
termed a ligand knowledge base (LKB). We also explore
how an LKB might be constructed so as to span the full
range of chemical (ligand) space, hence covering greater di-
versity in ligand structure and type than can be readily ob-
tained by experimental studies. We seek to develop a proto-

col for the robust characteriza-
tion of ligand properties, based
on a trial with an important
class of ligands (phosphorus(iii)
derivatives, see Figure 1). With
this knowledge in hand we then
develop statistical models that
are able, amongst other things,
to reproduce experimentally de-
rived data on their (emergent
or dependent) behavior in
metal complexes.

First let us consider what such an LKB might consist of
and what it would allow its user to do.

1) A computationally derived LKB would contain robust
descriptors of ligand properties. The robustness of the
values of these descriptors should ideally mean both that
they can be reliably obtained, that is, they are computa-
tionally robust, and that they can be transferred to a vari-
ety of circumstances, that is, they are chemically robust.

2) The ligand descriptors in the LKB should afford the
chemist insight into the part of chemical space in which a
given ligand is located—perhaps better termed its loca-
tion in ligand space. A sufficient range, robustness and
diversity of descriptors are required so that all the impor-
tant properties, both inherent and otherwise, of the li-
gands are captured in the LKB.

3) The principal dimensions of this ligand space might ide-
ally be related to concepts established in the literature of
coordination chemistry (steric bulk, s-donor ability, p-
acidity) or related fields (e.g. physical organic chemistry).

4) The LKB would ideally allow the robust statistical mod-
eling and prediction of a range of behavior of metal com-

plexes of the ligands in question, that is, give models that
are statistically robust.

One way forward in studies of ligand chemistry is to con-
duct systematic, large-scale experimental studies of ligands,
both as free (pro-)ligands and in a range of metal com-
plexes, as well as their behavior in reactions. This generates
empirical data, such as thermochemical, electrochemical or
reactivity, which allows description and analysis of their
properties. However, such studies are rarely undertaken
(perhaps for reasons of expense), and the impact of varying
experimental conditions can preclude the reliable interpreta-
tion of experimental data from different (literature) sources.
Chemical diversity in experimental datasets is therefore typ-
ically rather limited.

Given the practical difficulties and expense of assembling
an LKB from empirical data, alternative approaches are of
interest. We are investigating an approach in which in-
formation from structural (crystallographic) and compu-
tational sources are combined to provide descriptors of
ligand properties which can form a large-scale structured
collection of knowledge about transition metal com-
plexes. In developing and using such a knowledge base
we seek eventually to lay the foundations for the exploita-
tion of the growing availability of networked computa-
tional and data storage resources (so-called e-science and
the Grid architecture).[7] In its mature form, this LKB
might combine structural and experimental information
“mined” from available databases, such as the Cambridge
Structural Database (CSD)[8] with descriptors calculated
using appropriate computational approaches, for example,
density functional theory (DFT), for a wide range of
ligands.

As a first step in developing an LKB, we have generated
a collection of calculated structural and energetic descrip-
tors for monodentate phosphorus(iii) ligands. These ligands
were chosen for their ubiquity in organometallic and coordi-
nation chemistry. The properties of the metal�phosphorus
bond and the resulting complexes can be fine-tuned by mod-
ifying the substituents on the phosphorus to control the
steric and electronic profile of each ligand. A range of ex-
perimental[1–4,9–12] and computational[5,13–19] approaches have
been reported to describe and quantify these steric and elec-
tronic properties; some of these approaches have recently
been reviewed.[20] The resulting stereoelectronic parameters
have been used to describe phosphorus donor ligands and to
project their properties and hence map relationships in mul-
tidimensional chemical space. Independently, Bjørsvik[19]

and Cundari[5] have reported how these maps may be used
to identify ligand targets for screening experiments and cat-
alyst design, with the former work by using PCA-derived
variables based on calculated ligand descriptors while the
latter is based on direct plots of descriptors calculated for
rhodium complexes. In addition, a number of groups have
sought to estimate the quantitative contributions of steric
and s-/p-electronic effects by fitting regression models to
various experimentally observed linear free energy relation-

Figure 1. Metal-bound
phosphorus(iii) ligand, M�PA3.
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ships and to explore their use in
quantitative structure–property
relationships.[2,3,11,21, 22]

The availability of a range of
experimental data makes phos-
phorus donor ligands attractive
for a proof-of-concept study
such as this. We report below
the design of calculated
phosphorus(iii) ligand descrip-
tors and their statistical analy-
sis, and describe potential appli-
cations in mapping chemical
space as well as the interpreta-
tion and prediction of experi-
mental data. On the basis of
these observations we offer
some conclusions describing a
way forward for the design
and development of a mature
LKB.

Results and Discussion

Knowledge base design

Ligands : Structural and elec-
tronic descriptors were calculat-
ed for 61 monodentate
phosphorus(iii) ligands (Table 1)
with a range of substituents.
The dataset contains symmetri-
cal PA3 species 1–33 (A=alkyl,
aryl, halide, alkoxy, aryloxy,
amino), and so includes substi-
tuted tertiary phosphines and
phosphites, phosphine halides
and aminophosphines. In addi-
tion, a range of simple asym-
metric PA2B species 34–57 (A, B=alkyl, aryl, halide,
amino) and some more unusual examples where the phos-
phorus is incorporated into cage or bicyclic systems (58–61)
were included. This ligand selection was designed to achieve
optimal overlap with available experimental data and to
sample chemical space for phosphorus(iii) ligands widely,
thereby improving the robustness of statistical analyses (as
discussed below) and the chance of modeling a wider range
of ligand and complex behavior.

Complexes : Structural and energetic parameters were calcu-
lated for the free phosphorus(iii) species, L, and a range of
their complexes. Protonated ligands ([HL]+) and borane ad-
ducts ([H3B·L]) were chosen to investigate s-electronic ef-
fects. Two metal complexes, square-planar [PdCl3L]

� and
tetrahedral [Pt(PH3)3L], were included as such species may
involve contributions from both metal�L s- and p-bonding

interactions. In addition, structural cis and trans influences[28]

can be monitored for the palladium complexes.1 Table 2
summarizes the calculated descriptors and the complete
LKB is included in the Supporting Information (Table S1).

Table 1. Phosphorus(iii) donor ligands in prototype ligand knowledge base.

No. L=PA3 No. L=PA2B
A A B

1 H 34 F H
2 Me 35 H F
3 Et 36 Cl H
4 Pr 37 H Cl
5 iPr 38 F Me
6 Bu 39 Me F
7 tBu 40 Cl Me
8 CF3 41 Me Cl
9 Cy (C6H11) 42 CF3 Me
10 Bz (CH2Ph) 43 Me CF3

11 F 44 tBu Me
12 Cl 45 Me tBu
13 OMe 46 Ph Me
14 OEt 47 Me Ph
15 OPh 48 Ph Et
16 NH2 49 Et Ph
17 NMe2 50 Ph Cy
18 pyr (NC4H4, pyrrolyl) 51 Cy Ph
19 NC4H8 52 Ph Pyr
20 pip (NC5H10, piperidyl) 53 Pyr Ph
21 CHCH2 54 Ph o-Me-Ph
22 Ph 55 o-Me-Ph Ph
23 C6F5 56 Ph o-MeO-Ph
24 o-Me-Ph 57 o-MeO-Ph Ph
25 m-Me-Ph no. L

26 p-Me-Ph 58

27 o-MeO-Ph 59

28 p-MeO-Ph 60

29 3,5-(F3C)2-Ph 61

30 p-F3C-Ph
31 p-F-Ph
32 p-Cl-Ph
33 p-Me2N-Ph

1 In preliminary work, the set of LKB descriptors also included those
from octahedral molybdenum complexes [Mo(PH3)5L], where the elec-
tron-rich Mo0 d6 metal centre was expected to donate p-electrons to ap-
propriate ligands, L. However, the descriptors arising from these com-
plexes were found to correlate very highly with steric parameters and
the optimized geometries displayed considerable steric hindrance due
to the square-pyramidal {Mo(PH3)5} fragment. These steric interactions
seem to dominate the structure of the complexes, and (weaker) elec-
tronic effects are apparently masked and indeed a number of com-
plexes {Mo(PH3)5}L are not bound. Given this non-robust behavior all
data derived from these complexes were therefore excluded from the
analysis reported below.
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Computational requirements : From a technical point of
view, the computational method chosen to calculate descrip-
tors for any LKB must fulfill three main criteria: good relia-
bility, relatively low computational expense and scope for
automation of calculations.

The performance of any chosen computational approach
should be reliable, in order to prevent the occurrence of
random errors in the data set produced. Methods that yield
data disagreeing significantly with relevant experimental
data in some but not all cases should thus be avoided if no
chemical explanation can be given. We have used the BP86
density functional, because it has been shown to give rea-
sonably good structural and energetic performance in the
description of organometallic complexes[29] and it is unlikely

that significant errors would occur for individual structures
within a relatively homogenous class of metal–phosphine
complexes. Other gradient-corrected or hybrid density func-
tionals may have been equally suitable, because systematic
deviations of structural or energetic parameters, as often ob-
served for these functionals when compared to experimental
data, do not affect the results of the statistical analyses and
are thus negligible in a large data set.

Given the large number of species to be studied, the cal-
culation of descriptors should be relatively computationally
inexpensive (at least by present standards). More important-
ly, they must be easily performed and analyzed, that is, the
required geometric or energetic information readily extract-
ed, in a standard way with zero (or minimal) human inter-

Table 2. Calculated descriptors in prototype ligand knowledge base (LKB).

Descriptor[a] Derivation (Unit) Mean s Range Used?

free phosphorus(iii) species (L)
EHOMO energy of highest occupied molecular orbital [Hartree] �0.1996 0.0310 �0.2819–�0.1417 yes
ELUMO energy of lowest unoccupied molecular orbital [Hartree] �0.0296 0.0396 �0.1087–+0.0327 yes
Q(P) NBO charge on P in L 0.94 0.30 �0.03–1.63 no[b]

LP s-character contribution of P s-orbital to lone pair (LP), from NBO analysis (%) 57.5 7.5 49.0–80.3 yes
He8_steric interaction energy between L in ground state conformation

and ring of 8 Helium atoms,
Ester.=Etot(system)�[Etot(He8)+Etot(L)] [kcalmol�1] (Figure 2)

7.2 5.7 0.8–29.8 yes

protonated ligand ([HL]+)
PA proton affinity, PA=E(L)�E([HL]+) [kcalmol�1] 227.8 24.2 163.6–264.8 yes
Q(P,prot) NBO charge on P in [HL]+ 1.43 0.36 0.45–2.28 no[b]

Q(H,prot) NBO charge on H in [HL]+ 0.06 0.03 �0.02–+0.14 no[c,d]

DPy�A(H) change in av. r(P�A) compared with free ligand, L [T] �0.057 0.024 �0.115–+0.023 no[d]

DA-P-A(H) change in av. a(A-P-A) cf. L [8] 11.0 1.8 6.5–17.0 no[d]

P�H r(L�H) in [HL]+ [T] 1.416 0.005 1.399–1.427 no[c,d]

borane adduct (H3B·L)
Q(B fragm.) NBO charge on BH3 fragment �0.65 0.04 �0.72–�0.52 yes
BE(B) bond energy for dissociation of P-ligand from BH3 fragment [kcalmol�1][e] 35.5 4.3 23.4–41.7 yes
DP�A(B) change in av. r(P-A) cf. L [T] �0.022 0.009 �0.037–+0.009 yes
DA-P-A(B) change in av. a(A-P-A) cf. L [8] 3.4 1.2 0.1–6.3 yes
P�B r(P�B) [T] 1.927 0.026 1.861–1.977 yes
B�H av. r(B�H) [T] 1.221 0.002 1.216–1.224 no[c]

H-B-H av. a(H-B-H) [8] 113.6 0.7 112.3–115.6 no[c]

palladium complexes ([PdCl3L]�)
Q(Pd fragm.) NBO charge on [PdCl3]

� fragment �1.24 0.06 �1.37–�1.06 yes
BE(Pd) bond energy for dissociation of L from [PdCl3]

� fragment [kcalmol�1][e] 34.6 5.1 22.5–48.3 yes
DP�A(Pd) change in av. r(P�A) cf. L [T] �0.006 0.011 �0.026–+0.023 yes
DA-P-A(Pd) change in av. a(A-P-A) cf. L [8] 0.8 1.7 �3.2–+5.4 yes
P�Pd r(P�Pd) [T] 2.277 0.039 2.188–2.418 yes
Pd�Cl cis r(Pd�Cl), cis to L [T] 2.385 0.006 2.372–2.404 no[c]

Pd�Cl trans r(Pd�Cl), trans to L [T] 2.366 0.013 2.334–2.392 yes

platinum complexes ([Pt(PH3)3L])
Q(Pt fragm.) NBO charge on [(PH3)3Pt] fragment 0.01 0.07 �0.10–+0.26 yes
BE(Pt) Bond energy for dissociation of P ligand from [Pt(PH3)3] fragment [kcalmol�1][e] 16.4 4.1 6.2–24.2 yes
DP�A(Pt) change in av. r(P�A) cf. L [T] 0.002 0.011 �0.017–+0.043 yes
DA-P-A(Pt) change in av. a(A-P-A) cf. L [8] �0.04 1.7 �6.0–+3.4 yes
P�Pt r(P�Pt) distance [T] 2.320 0.038 2.234–2.390 yes
H3P�Pt av. r(H3P�Pt) [T] 2.325 0.006 2.312–2.339 no[c]

a(H3P)Pt(PH3) av. a(H3P)-Pt-(PH3) [8] 108.0 1.0 105.4–110.6 yes

cumulative
S4’ calcd (� aAPA��aZPA), where Z=BH3, [PdCl3]

� , [Pt(PH3)3] [8] 38.4 11.1 7.8–65.9 yes

[a] All calculations were performed on isolated molecules. [b] Large range of values, no clear trend in data, see text for discussion. [c] Small range of
values, see text for discussion. [d] Highly correlated with H3B.L descriptors, see text for discussion. [e] BE= [Etot(fragment) + Etot(L)]�Etot(complex).
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vention. This will aid in future data generation and analysis
in an e-science/Grid framework, where multiple calculations
can be distributed across a network and information extrac-
tion must be automated.

For now, more complex computational data, for example
frequency calculations, have been avoided, even though es-
tablished (experimental) electronic parameters for phospho-
rus donor ligands are often based on carbonyl stretching fre-
quencies (see for example references [1–4, 10,16]). Frequen-
cy calculations are significantly more computationally ex-
pensive than geometry optimizations and may require in-
spection of the output to identify the correct result,
especially if little or no molecular symmetry is found and so
vibrational modes are highly mixed. We have also avoided
more complex properties such as the minimum in the elec-
trostatic potential proposed by Koga et al.[18] and parameters
derived from energy decomposition analysis.[17] In addition,
we have not performed extensive conformational searches,
as these are too expensive to be attempted at DFT level.
Furthermore, the energetic ranking derived from cheaper
approaches such as molecular mechanics (MM) is potential-
ly unreliable[30] and the analysis of multiple conformers
would be difficult to automate. Some or all of these con-
straints might be removed in a later version of a LKB, most
likely in response to a lowering of computational cost, that
is, due to improvements of data management software as
well as hardware, both targeted by the development of the
Grid architecture. As shown in Table 2, all descriptors in
this prototype LKB can either be extracted directly from ge-
ometry optimizations or can be derived by simple mathe-
matical operations, thus making the calculations amenable
to automation.

Descriptors : The calculated descriptors (Table 2) include:

1) frontier molecular orbital energies of the free ligands,
2) ligand proton affinities,
3) adduct binding energies,
4) ligand and metal fragment charges,
5) a range of structural parameters describing geometry

changes of both ligand and metal fragments upon com-
plexation,

6) two measures of ligand steric bulk, the S4’ parameter[5,6]

and an energetic measure of steric bulk, He8_steric (see
below).

To facilitate the development of linear regression models
for experimental data, these descriptors are linearly related
to energy, either directly (orbital energies, binding energies,
proton affinity) or indirectly. For example, structural
changes on complexation can be expressed as a perturbation
from the ideal geometry of a free ligand. We have not in-
cluded Tolman<s cone angle (q)[1] of the ligands as a descrip-
tor, both because it is difficult to compute automatically[5]

and because its relationship to energy cannot be readily es-
tablished (see below). Instead, we have developed a new
steric parameter (termed He8_steric), calculated as the inter-

action energy between the phosphorus(iii) ligand and a ring
of eight helium atoms. The helium atoms are held in regular,
fixed positions on a circle of radius 2.5 T. The phosphine ge-
ometry is re-optimized in the presence of this He8 ring,
starting from an optimized conformation of the free ligand,
with the phosphorus atom constrained to lie exactly 2.28 T[1]

above the ring centroid (Figure 2) along the perpendicular

to its plane. This arrangement seeks to mimic the non-
bonded, closed-shell/closed-shell, interactions of a phos-
phine with, for example, the cis ligands in an octahedral
complex. Given the van der Waals radii of He and P (1.4
and 1.8 T)[31] and the He···P distance in this model (3.383 T)
the lone pair of the phosphorus does not interact strongly
with the He8 ring, so that only substituent steric effects con-
tribute significantly to the interaction energy. This is con-
firmed by the small values of this parameter calculated for
the smallest phosphine 1 (2.3 kcalmol�1) and its halide de-
rivatives, for example, ligands 34–37 (range 1.6–
1.9 kcalmol�1), as well as the parent ligands trifluorophos-
phine 11 (1.5 kcalmol�1) and trichlorophosphine 12
(2.2 kcalmol�1, see Tables 2 and S1 for value range and full
dataset respectively).

Descriptor reduction : In the first instance, it is appealing
simply to compute and include a wide range of chemically
varied parameters to describe ligand properties. However,
the use of a substantial number of highly correlated descrip-
tors can be problematic in applying multivariate analysis
techniques, one of the intended uses of the LKB. For exam-
ple, in regression models based on such data the estimates
of coefficients may be unreliable and hence not robust.[32]

Descriptive statistics (mean, standard deviation, range, fre-
quency distributions) were therefore used to assess the suit-
ability of individual descriptors for inclusion in the LKB. In
particular, those descriptors with either very large or very
small value ranges were excluded, because of their poor ro-
bustness and unresponsiveness respectively. Several varia-
bles associated with structural changes in the metal frag-
ment (e.g. H3P�Pt, H-B-H, see Tables 2 and S1) were ex-
cluded from further analysis, because their range of values
was so small (0.027 T and 3.38, respectively) as to make
them insensitive to variation of ligand. Indeed it is likely
that for these descriptors computational “noise” might be

Figure 2. Geometry used for computation of the He8_steric parameter:
the interaction energy between the phosphorus ligand (PA3) and a ring of
eight helium atoms.
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significant on the scale of
ligand effects. Thus comparison
with analogous ligand-centered
quantities, for example Pt–P
distance and A-P-A angle in
BH3·L adducts, which have
ranges of 0.156 T and 10.98, re-
spectively, suggests that some
of these Lewis acid fragments
do not show a significant struc-
tural response to variations in
the phosphorus substituents.

Pearson correlation coeffi-
cients were computed to quan-
tify the (linear) relationship be-
tween pairs of descriptors and
with a view to reducing the
number of descriptors required
in the LKB. Structural variables of the same kind, for exam-
ple, changes in bond length and angles on complexation,
were found to be highly correlated for chemically similar
complexes. For example, reasonably high correlation coeffi-
cients were observed for NBO fragment charges (Q, r=
0.804) and bond angle changes on complexation (DA-P-A,
r=0.729) for the s-bound adducts BH3·L and [HL]+ . This
suggests that s-bonding could be well represented by the
BH3·L adduct data alone and, with the exception of proton
affinity, the descriptors for the protonated ligand [HL]+

were therefore excluded from further analysis (without sub-
stantial loss of information content).

For the NBO charges calculated for the phosphorus
atom in both free and protonated [HL]+ ligands
(Q(P), Q(P,prot)), no significant linear relationship with
other measures of ligand electronic properties, such as
EHOMO, ELUMO and PA, could be identified. These two sets of
NBO charges on P seem unable to capture the electronic ef-
fects of substituent variations, notably in response to
changes in the para-substituent of arylphosphines (26, 28,
30–33, Table S1), on the electronic properties of the ligands
and were excluded from further analysis, because they are
apparently not computationally robust.

Contextualization : Exploratory graphical data analysis and
regression modeling can be used to relate the new descrip-
tors to more familiar ligand parameters from the literature
(a process one might term contextualization). The relation-
ship between the values of the original Tolman cone angle
q[1] and the He8_steric parameter is shown in Figure 3.
While the Pearson linear correlation coefficient is quite high
(r=0.861), fitting a simple linear regression equation (R 2=

0.742) gives rise to physically unrealistic negative He8_steric
values for phosphine 1 and the phosphite cage ligand 58, {P-
(OCH2)3CMe}. The data are better described by a cubic
function (R 2=0.869) as indicated in Figure 3. It is worth
noting that exclusion of the most hindered ligands, tris(tert-
butyl)phosphine (7) and tris(ortho-tolyl)phosphine (24)
from a linear regression fit gives only slightly improved

agreement (R 2=0.782), but poorer fits for the bulkier li-
gands tris(isopropyl)phosphine (5) and tris(cyclohexyl)phos-
phine (9) than observed for the cubic fit.

As shown in Figure 3, the sterically demanding ligands 7
(PtBu3) and 24 (P(o-tolyl)3) have higher He8_steric parame-
ters than would be predicted from the corresponding cone
angles, whereas that of tris(pentafluorophenyl)phosphine
(23, P(C6F5)3) is lower. The deviation observed for ligand 24
may be explained by conformational differences. Tolman
minimized the cone angle by assuming the least bulky con-
formation, that is, folding all substituents away from the
metal.[1] Later work (discussed for example in references
[12,14 and 33]) has aimed to improve agreement between
Tolman<s cone angles and those measured from crystal
structures, where alternative ligand conformations with
larger cone angles are observed. As stated previously, we
have used an optimized conformation of the free ligand as
the input geometry for the calculation of the He8_steric pa-
rameter. Even though the ligand geometry in the He8·L spe-
cies was re-optimized, significant conformational relaxation
did not always occur, substituent rotation often being re-
stricted. A survey of the o-tolyl ring conformations in crystal
structures involving ligand 24[34] confirms that two conform-
er types (ggg/exo3 and gga/exo2, see reference [34] and ref-
erences therein) are adopted in different coordination envi-
ronments (see Table S2). The He8_steric parameter was cal-
culated for both conformers. The value for the conformer
most commonly observed in sterically hindered complexes
(gga/exo2, open circle, Figure 3, see Table S2 and reference
[34]), is substantially lower.2 A summary of relevant CSD
reference codes and torsion angles for crystal structures of

Figure 3. Plot of Tolman cone angle versus He8_steric descriptor. Open circle refers to alternative ligand con-
formation; see text for discussion and Figure S1 for plot showing all ligand numbers. Nonlinear relationship il-
lustrated by cubic function, y=0.00002x 3�0.0061x 2 + 0.6347x � 21.623, R 2=0.869.

2 The relationship between the He8_steric parameter and the MM-calcu-
lated ligand repulsive energy parameter developed by Brown[13,14] can
be described reasonably well by a linear function (R 2=0.873), if the
He8_steric value for tris(o-tolyl)phosphine ligand 24 is treated as an
outlier (R 2=0.742, if included). This observation, as well as the effect
of different conformational preferences in different coordination envi-
ronments, will be discussed in detail elsewhere.

www.chemeurj.org H 2006 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim Chem. Eur. J. 2006, 12, 291 – 302296

J. N. Harvey, A. G. Orpen et al.

www.chemeurj.org


free ligands and representative complexes of phosphine 24
may be found in Table S2 (Supporting Information).

Complexes of the conformationally rigid tris(tert-butyl)-
phosphine ligand 7 often have longer metal�phosphorus
bond lengths than those observed for smaller ligands (see
Table S3 for comparison of representative M–L distances
observed in the CSD for ligands 2 (PMe3) and 7 (PtBu3)),
presumably in response to the steric hindrance encountered
in this ligand. This structural relaxation is not possible in the
He8_steric model, because the ring centroid–phosphorus dis-
tance is fixed (as it is also in the Tolman cone angle proto-
col). It seems likely that in this case the calculated value of
the He8_steric parameter exceeds that expected from the
cone angle because the energetic measure takes better ac-
count of highly unfavorable interactions with other ligands.
The apparently low value of He8_steric for the conforma-
tionally flexible ligand tris(pentafluorophenyl)phosphine
(23, P(C6F5)3) is puzzling but may have its origin in an artifi-
cially high cone angle value (1848, cf. 1458 for PPh3).

While the effect of conformational changes is considera-
ble for the bulky o-tolyl ligand 24, amounting to an energy
difference of 6.7 kcalmol�1, most ligands in this version of
the LKB are sterically less hindered and we estimate that
this “conformational noise” is unlikely to exceed, on aver-
age, 2 or 3 kcalmol�1. Work is currently under way to ex-
plore the effect of conformational variability on the calculat-
ed descriptors and how this may be captured by suitable de-
scriptors in future versions of the LKB.

Multivariate data analysis

The collection of ligands and descriptors in this phosphorus-
(iii) donor LKB can be investigated using a variety of multi-
variate statistical methods.[35,36] Our choice of methodology
has been determined by the characteristics of the data, con-
sisting of relatively few ligands and a rather wide range of
descriptors, which are often quite highly correlated. Al-
though future extensions of the LKB will increase the diver-
sity of ligands investigated, they are likely to fall into chemi-
cally distinct subsets, so these statistical analysis protocols
will continue to be relevant. We have identified two distinct
aims: mapping of chemical (ligand) space and property in-
terpretation/prediction. The following section is structured
accordingly.

Mapping chemical space : Principal component analysis
(PCA) typically simplifies a multidimensional set of descrip-
tors to a few derived variables (the principal components or
PCs) that capture a large proportion of the variation in the
data set. These PCs are orthogonal and are linear combina-
tions of the original descriptors. The distribution of ligands
in multidimensional descriptor space can be projected to
fewer dimensions in pairwise plots of their values on the re-
sulting PCs. Such plots can be used to identify clustering of
subsets of ligands in the knowledge base. Since estimates of
regression coefficients may be unreliable if highly correlated
descriptors are used (see above),[32] regression on the or-

thogonal PCs arising from PCA may be preferable when
many descriptor variables are considered to be important.
In such principal component regression (PCR), the PCs are
used to build regression models with the aim of providing a
good approximation of the relationship between a response
variable and a small number of these PCs (which carry in-
formation from a larger number of the original descriptors).
However, in both the projection and regression applications,
interpretation and contextualization of PCs may be prob-
lematic when they are composed of many of the original de-
scriptors (see below), and following PCA with PC rotation
may be useful in interpreting important contributions.

The correlation matrix of the descriptor variables detailed
in Table 2 was used in PCA followed by Varimax rotation.
This technique reduces the number of descriptors in each
PC in favor of those with large contributions, giving the re-
sulting PCs a simpler structure while leaving them orthogo-
nal.[36] A score plot of the first two PCs is shown in Figure 4
and a more detailed summary of the PCA results is reported
in the Supporting Information (Tables S4–S6).

The first two PCs describe some 67% of the variation in
the descriptor dataset and the third PC a further 13% (see
Table S4). The twodimensional map of phosphorus ligand
space derived from PCs 1 and 2 (Figure 4) shows clusters of
ligands corresponding to chemically familiar subsets and
offers an appealing insight into ligand classification and sim-
ilarity. Thus the arylphosphines appear grouped around
PC1=1, PC2=0.5; the trialkylphosphines around PC1=0,
PC2=�1 etc. This map is useful in locating unusual trialkyl-
phosphine ligands (such as the adamantane-derived ligand
61) as being similar to more familiar ligands (notably alkyl
and aryl phosphites) in neighboring regions of ligand space.
Most interestingly, the rhodium complex of ligand 61 is an
active hydroformylation catalyst[37]—not a characteristic of
orthodox trialkylphosphines, but commonplace for trialkyl-
phosphites. In addition, the consequences of systematic
ligand variations can be visualized (e.g. P(Pyr)3 (18), P-
(Pyr)2Ph (53), P(Pyr)Ph2 (52)). A plot of the first two PCs
can also be used to identify where in chemical space new li-
gands would occur, even if experimental data are not avail-
able, and to determine their proximity to current ligands.

In contrast to previous stereoelectronic maps,[1,5] which
explicitly plot a steric versus an electronic parameter and do
not consider properties of ligand complexes, the PC maps
shown in Figure 4 are based on the projection of a large
number of variables to pair-wise plots of PCs, that is, of
linear combinations of multiple descriptors (see reference
[22] for a similar approach to that used here but using free
ligand-only properties). Our approach allows for a more ob-
jective capture of the properties of ligands in a range of
chemically different coordination environments. The reasons
for a ligand adopting a particular location in ligand space
can be investigated by further analysis of the individual de-
scriptors contributing to each PC.

The use of PCA for reducing multidimensional descriptor
space to a small set of linear combinations of descriptors is
appealing, but it is also interesting to try to associate the re-
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sulting PCs with familiar steric and electronic properties. In-
spection of the descriptor loadings on the rotated PCs
(Tables 3 and S6) suggests that the first PC consists mainly
of descriptors associated with steric and s-electronic effects
and the second PC can perhaps be interpreted in terms of
p-electronic effects. The first two PCs therefore appear to
correspond to some extent to established stereoelectronic
parameters and to explain about two thirds of the variation
in the present dataset (Table S4). Interpretation of the third
PC is less obvious, but it is notable that it is mainly derived
from the changes in A-P-A angle on complexation to B, Pd
or Pt in adducts. It apparently records an aspect of the sensi-
tivity of a ligand to the stimulus provided by binding to a
Lewis acid, and so perhaps a facet of their behavior that
emerges on complexation.

In general, interpretation of PCs is problematic and not
statistically robust, primarily because PCA is based on the
variance of descriptors and so is in turn sensitive to outlier
values.[38] For example, if we change the subset of ligands
that is used, it is desirable that the PC composition remains
reasonably consistent. This is important when developing
PCR models for the interpretation of experimental data,
particularly if these data are not available for all ligands in
the LKB.

The correlation matrix on which PCA is based is derived
from the descriptor covariance matrix by standardization of

Figure 4. Principal component score plot (PC1 vs PC2) for all ligands in LKB. (Mixed ligands PA2B are denoted by the same symbol as the analogous
PA3 species. See Supporting Information for larger plot (Figure S2).

Table 3. Principal component loadings (Varimax rotation), analysis for
all ligands in LKB. (Descriptors with contributions < j0.3 j are not dis-
played, see Table S6 for full results.)

Descriptor PC1 PC2 PC3

EHOMO 0.718 �0.552
ELUMO �0.800
PA 0.811 �0.502
LP s-character �0.863
Q(B fragm.) 0.894
Q(Pd fragm.) 0.871 �0.313
Q(Pt fragm.) �0.399 0.811
BE(B) �0.856
BE(Pd) �0.536 �0.554
BE(Pt) �0.755 �0.356
DP�A(B) 0.501 0.529
DP�A(Pd) 0.417 0.762
DP�A(Pt) 0.780
DA-P-A(B) 0.809
DA-P-A(Pd) 0.926
DA-P-A(Pt) 0.432 0.794
P�B 0.925
P�Pd 0.935
P�Pt 0.924
He8_steric 0.841
S4’ calcd �0.822 0.300
Pd�Cl trans 0.599 �0.745
a(H3P)Pt(PH3) 0.737
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the data. Standardization is useful in order to remove the ef-
fects of scale and unit (e.g. angles vs degrees vs kcalmol�1)
from the data set. It does, however, leave outliers and their
potentially distorting effects in the data set. In addition,
standardization can accentuate the noise content of a data-
set if essentially invariant descriptors are retained (i.e. ,
those termed unresponsive above). As noted above, such de-
scriptors were eliminated from the dataset, for exactly this
reason.

We have therefore tested the statistical robustness of our
PCA results by repeating the analysis for i) randomly select-
ed subsets of ligands and ii) some chemically defined sub-
sets, for example, arylphosphines. The order and composi-
tion of the PCs does indeed change for these subsets, and
this variation becomes more pronounced when Varimax ro-
tation is applied. It was this lack of robustness that led to
the inclusion of a group of mixed ligands of the form PA2B
in order to better sample chemical space. Their inclusion
has to some extent improved the robustness of the PCA re-
sults (both chemically and statistically). However, quantita-
tive interpretations of the principal components remain du-
bious and use of a statistically more robust version of PCA,
where the impact of outliers has been reduced by robust es-
timation of the correlation matrix, may be beneficial.[38,39]

Property interpretation and prediction : Given Figure 4, the
descriptors seem to capture chemically intuitive ligand simi-
larities and so provide a useful qualitative approach for visu-
alizing chemical space. The LKB data were explored in
greater detail by considering multiple linear regression
(MLR) models for experimentally measured quantities
using the calculated descriptor values. These MLR models
were used to investigate whether a range of rather different
experimental variables can be described by suitable linear
functions of ligand descriptors. In addition, the application
of these models to the prediction of experimental data for
new ligands was assessed.

Many of the descriptors in the LKB are correlated (see
above) and thus different regression models, using subsets
of descriptors, can be derived. These models might have
similar performance when assessed according to the success-
ful description of the relationship between a response varia-
ble and a set of descriptors, that is, all models have similar
regression coefficients R 2, with values close to 1. The com-
plexity (i.e., dimensionality) of the model will depend on
the variable selection procedure used, for which various
manual and automatic procedures are known. These are
generally based on evaluating regression diagnostics for dif-
ferent models derived from a given set of descriptors so as
to balance model complexity (having fewer descriptors typi-
cally leads to improved transferability and simplifies inter-
pretation) and performance (having more descriptors allows
better approximation of response variable).

The identification of a “best” model further depends on
whether this model will be used in the interpretation of ob-
served data or for the prediction of unknowns. In the former
case, the regression coefficient, R 2, and the adjusted R 2

value indicate how well the experimental data is described
by the model. The adjusted R 2 statistic gives a better ac-
count of the balance between model complexity and quality,
unlike the standard R 2 which usually increases upon using
more descriptors. The quality of a model fit can further be
assessed by estimating the prediction error as the mean
squared residual and by diagnostic plots. While plotting ob-
served versus predicted data can be used to confirm the suc-
cessful description of the experimental data by an MLR
model, if data points are clustered around the diagonal indi-
vidual deviations become much clearer in a plot of predicted
versus residual error values.

These diagnostics give no indication of the predictive ca-
pabilities of the models, or indeed of their robustness to var-
iations in the ligand set. To investigate whether an MLR
model is useful for estimating experimental parameters for
new ligands, additional diagnostic statistics have to be con-
sidered. In a large database, the response data can be split
into representative training and test sets to establish the
quality and robustness of model predictions. However, when
there is a limited amount of data, models may be extrapolat-
ing, so re-sampling methods such as cross-validation should
be used.[40,41] Prediction errors were estimated here using 10-
fold cross-validation[40,42] and bootstrapping.[43] When using
cross-validation to assess a model, we fit to a subset of the
original data and make predictions for the cases (ligands)
that were excluded.[40,42] In the bootstrap re-sampling
method,[43] a random sample is drawn from the original data
to generate a new data set of the same size as the original.
This is achieved by replacement, that is, by allowing multi-
ple occurrences of the same sample. A regression model is
then fitted to this bootstrap sample, but the model is validat-
ed by making predictions for the original sample. This ap-
proach can be used to mimic variation in the original data
to obtain a further measure of the predictive power of a
given model.

To illustrate this application of a LKB, three examples of
MLR models for experimental predictors are shown
(Tables 4, S7 and S8), with diagnostic plots (fits and residu-
als) shown in Figure 5. These examples were selected to il-
lustrate the application of this prototype LKB for the MLR-
based interpretation and prediction of a range of experimen-
tally determined parameters. It is notable that these parame-
ters span a considerable range of information types, being
geometric (describing molecular structure), energetic (de-
scribing reaction thermodynamics) and “electronic” (ac-
tually reporting vibrational behavior), respectively. More ad-
vanced variable selection and model evaluation methods, as
well as protocols for robust parameter estimation and deter-
mining appropriate model complexity, will be evaluated and
discussed in detail in due course.[44]

Table 4 summarizes the experimental data and lists the
descriptors used in the regression models as well as giving
representative diagnostic data. The full models are included
in the Supporting Information (Tables S7 and S8). Overall,
these models provide a good description of the relationship
between the experimental data and the calculated descrip-
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tors, with regression coefficients
close to 1. This is further illus-
trated by small estimated pre-
diction errors (Table 4) and the
scatter of residuals in the diag-
nostic plots (Figure 5). The
models for P�Rh and DHrxn in
particular demonstrate that the
LKB descriptors can be used to
derive linear models, which re-
produce the experimental data
closely, with residuals at about
the level of experimental noise.
While it might be argued that
these models are over-fitted
with six descriptors and only 17
experimental observations
(Table S8), they have been
chosen to illustrate this poten-
tial application of a LKB and
as yet optimizing model com-
plexity has been of secondary
importance. For both P-Rh and
DHrxn, the descriptors used in
the models (Table 4 and S7)
could be interpreted as meas-
ures of steric (S4’ calcd) and
s-/p-electronic effects, with PA
and LP s-character indicative
of s-bonding and ELUMO re-
lated to p-bonding, whereas
the Pd- and Pt-derived descrip-
tors (DP–A(Pd), DA-P-A(Pd),
P–Pd, BE(Pd), Q(Pt fragm.),
a(H3P)Pt(PH3)) seem to in-

Figure 5. Diagnostic (fit and residual) plots for multiple linear regression models; a) Rh–P distance [T] in
four-coordinate, square-planar RhI complexes with a phosphorus ligand trans (from CSD survey, Table S9), b)
DHrxn [kcalmol�1], for [Rh(CO)2Cl]2 + 4PX3!2Rh(CO)(Cl)(PX3)2 + 2CO,[2] c) Tolman electronic parame-
ter, A1 n(CO) in [(CO)3NiL][1] [cm�1]. (Full models are summarized in the Supporting Information (Tables S7
and S8).)

Table 4. Multiple linear regression models using LKB data.[a]

Experimental variable N[b] Mean STD Descriptors in
model

R2 (adj.
R2)[c]

Estimated prediction errors[d]

w MLR 10-fold cross-
validation

Bootstrap[e]

P�Rh [T], in four-coordinate,
square planar RhI complexes
with L trans, (CSD survey, Table S9)

17 2.279 0.026 PA, DP�A(Pd), DA-
P-A(Pd),
P�Pd, S4’ calcd,
a(H3P)Pt(PH3)

0.998
(0.996)

1.612X10�3 2.917X10�3 2.274X10�3

DHrxn [kcal
�1mol], for [Rh(CO)2Cl]2 + 4PX3!

2Rh(CO)(Cl)(PX3)2 + 2CO[2]
17 55.9 13.5 ELUMO, LP s-charac-

ter,
Q(Pt fragm.),
BE(Pd),
P�Pd, S4’ calcd

0.997
(0.995)

0.72 1.40 0.93

Tolman electronic parameter (TEP),
A1 n(CO) in [(CO)3NiL][1] [cm�]

49 2074.4 14.8 PA, LP s-character,
Q(Pt fragm.), DA-P-
A(Pd),
P�Pt, P�B,
He8_steric

0.988
(0.986)

1.60 1.99 1.80

[a] See Table 2 for variable names, all models include a constant. Descriptor coefficients, which are sensitive to the subset of ligands used, have not been
listed, as we are mainly interested in the descriptors contributing to each model. Full models are summarized in the Supporting Information (Tables S7
and S8). [b] Number of ligands in sample. [c] Model quality is always improved by additional descriptors, so adjusted R2 takes the number of variables in
the model into account when computing the regression coefficient. [d] Mean absolute residual. [e] Conditional loss of prediction.
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clude contributions from both s- and p-bonding effects. This
interpretation broadly corresponds to conventional under-
standing of bonding in transition metal�phosphorus ligand
complexes. However, the increase in prediction errors esti-
mated using 10-fold cross-validation and bootstrapping com-
pared with the MLR mean absolute residuals suggests cau-
tion in using these models for making predictions for future
ligands given the limited number of experimental observa-
tions available for P�Rh and DHrxn (17 in each case).

Modeling the Tolman electronic parameter (TEP)[1] leads
to a lower regression coefficient (Table 4), but the fitted
model again provides a good approximation to the relation-
ship with the LKB descriptors. Steric (He8_steric) as well as
s- and p-electronic contributions to the model can be identi-
fied (Tables 4 and S7), with PA, LP s-character and P�B re-
lated to s-bonding and various Pd- and Pt-derived descrip-
tors (Q(Pt fragm.), DA-P-A(Pd), P�Pt) again including con-
tributions from both s- and p-bonding. The combination of
s- and p-electronic effects is in good agreement with previ-
ous interpretations of both this parameter and carbonyl
stretching frequencies in related complexes, which have
been used as measures of the electronic properties of phos-
phorus ligands and are thought to include both s- and p-
electronic effects.[31, 42] It should be noted that for the majori-
ty of mixed phosphorus ligands the TEP has not been mea-
sured experimentally, but was instead derived by Tolman by
assuming that substituent contributions are additive,[1] which
may not adequately describe their interactions in asymmet-
ric ligands.[10,33]

Conclusions

A prototype ligand knowledge base of DFT-calculated de-
scriptors for phosphorus(iii) donor ligands has been devel-
oped. The descriptors have been designed to achieve chemi-
cal and computational robustness by sampling the properties
of a range of ligands and their representative complexes
using a standard DFT approach and parameters amenable
to automated calculation. The resulting knowledge base can
be used to map chemical space and visualize clustering of li-
gands in chemically meaningful subsets. In addition, linear
regression models can be developed that describe the rela-
tionship between the descriptors and a range of experimen-
tal parameters. The good performance of the models for
TEP, P�Rh and DHrxn discussed in this work demonstrates
that the LKB descriptors as presently constructed are com-
petent to predict a substantial range of ligand behavior. This
allows us to attempt the interpretation of experimental data
and the evaluation of novel or untested ligands by predict-
ing their properties.

The problems associated with building models of ligand
behavior that emerge on complexation seem not to be insu-
perable, given the satisfactory performance of the prototype
LKB in these MLR studies. This has been achieved, because
the LKB explicitly includes data on a range of complexes in
which such behavior can in principle be (and presumably

has been) recorded. The nature of PC3 is perhaps the best
indication that this is indeed happening. Therefore, to cap-
ture the full extent of ligand behavior, a wider range of
robust descriptors for ligands in complexes should be sought
to record the changes in their properties on binding to
metals.

Key steps to the construction and use of a mature LKB
include the following:

1) Identification of computationally robust, responsive de-
scriptors, therefore identifying and discarding non-robust
and unresponsive descriptors.

2) Design and computation of a range of descriptors suffi-
ciently diverse to sample the inherent and complexation
dependent properties of ligands, both in the “free” state
and in a range of coordination environments.

3) Inclusion of a range of ligands sufficiently diverse and
numerous to sample comprehensively the chemical space
they span.

4) Development of robust statistical protocols for the mod-
eling and prediction of the behavior of ligands in com-
plexes. The models derived map the chemical (ligand)
space in Figure 4 above on to the behavior space of the
complexes in which the ligands are employed.

While this LKB approach shows promise as a tool for the
design of transition-metal complexes and their properties,
the protocols for statistical analysis need to be refined to im-
prove model robustness to outliers and variations in the
subset of ligands. Similarly, there is a need to establish crite-
ria for comparison and evaluation of competing models. The
effect of changes in conformational preferences in response
to different coordination environments should be explored
and incorporated in relevant descriptors. An extension to bi-
dentate phosphorus ligands as well as to a more chemically
diverse set of ligands will require development of a more ex-
tended set of descriptors and representative species. In addi-
tion, the data generation process should be fully automated
and the calculated LKB should eventually be interfaced
with databases of structural and experimental data. Work is
currently under way in all these areas to develop and imple-
ment the conceptual framework outlined in this paper.

Computational Details

All calculations used the Jaguar package[23] and the standard Becke-
Perdew (BP86) density functional.[24] The Jaguar triple-zeta form of the
standard Los Alamos ECP basis set (LACV3P) was used on Pd and Pt,
employing the 6-31G* basis for all other atoms. “Loose” convergence
(five times larger than default criteria) was used for all geometry optimi-
zations. Test calculations using the more stringent default convergence
criteria did not lead to significant changes in energies, bond lengths, or
angles, but were much more time-consuming. Calculations were per-
formed on isolated molecules and NBO atomic charges were calculat-
ed.[25] Vibrational frequencies were not computed, and so the energetic
data do not include a correction for zero-point energy, although we note
that this would be expected to be quite small. In the absence of frequen-
cy calculations, stationary points have not been verified as minima. How-
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ever, most ligands and complexes are large and optimization to transition
states seems unlikely for these carefully built low symmetry starting geo-
metries. Although multiple conformations are viable for some of the li-
gands and complexes, conformational searching was not attempted, but
rather the choice of input geometry was guided by those observed in
crystal structures. The impact of potentially resulting “conformational
noise” (i.e., variations in descriptor values between alternative conform-
ers) on the data is discussed below. Initial statistical analyses were per-
formed in SPSS for Windows,[26] and linear regression models evaluated
in R.[27]

Acknowledgement

The authors would like to thank A. H. Welsh for helpful discussions of
robust statistical techniques and the Cambridge Crystallographic Data
Centre (CCDC) for providing access to the Cambridge Structural Data-
base (CSD). Financial support of the Engineering and Physical Sciences
Research Council, including an Advanced Research Fellowship (J.N.H.),
is gratefully acknowledged.

[1] C. A. Tolman, Chem. Rev. 1977, 77, 313–348.
[2] A. L. Fernandez, A. Prock, W. P. Giering, The QALE Web Site,

http://www.bu.edu/qale/ (accessed June 10, 2004).
[3] M. R. Wilson, A. Prock, W. P. Giering, A. L. Fernandez, C. M. Haar,

S. P. Nolan, B. M. Foxman, Organometallics 2002, 21, 2758–2763,
and references therein.

[4] C. Babij, A. J. PoZ, J. Phys. Org. Chem. 2004, 17, 162–167.
[5] K. D. Cooney, T. R. Cundari, N. W. Hoffman, K. A. Pittard, M. D.

Temple, Y. Zhao, J. Am. Chem. Soc. 2003, 125, 4318–4324.
[6] B. J. Dunne, R. B. Morris, A. G. Orpen, J. Chem. Soc. Dalton Trans.

1991, 653–661.
[7] National e-Science Centre, Defining e-Science, http://www.nesc.a-

c.uk/nesc/define.html (accessed June 4, 2004).
[8] F. H. Allen, Acta Crystallogr. Sect. B 2002, 58, 380–388; A. G.

Orpen, Acta Crystallogr. Sect. B 2002, 58, 398–406.
[9] W. A. Henderson, Jr., C. A. Streuli, J. Am. Chem. Soc. 1960, 82,

5791–5794; G. M. Bodner, M. P. May, L. E. McKinney, Inorg. Chem.
1980, 19, 1951–1958; A. G. Orpen, N. G. Connelly, J. Chem. Soc.
Chem. Commun. 1985, 1310–1311; A. B. P. Lever, Inorg. Chem.
1990, 29, 1271–1285; A. G. Orpen, N. G. Connelly, Organometallics
1990, 9, 1206–1210; L. Chen, A. J. PoZ, Coord. Chem. Rev. 1995,
143, 265–295; S. S. Fielder, M. C. Osborne, A. B. P. Lever, W. J.
Pietro, J. Am. Chem. Soc. 1995, 117, 6990–6993; S. Serron, S. P.
Nolan, K. G. Moloy, Organometallics 1996, 15, 4301–4306; J. M.
Smith, B. C. Taverner, N. J. Coville, J. Organomet. Chem. 1997, 530,
131–140; J. M. Smith, N. J. Coville, L. M. Cook, J. C. A. Boeyens,
Organometallics 2000, 19, 5273–5280; J. M. Smith, N. J. Coville, Or-
ganometallics 2001, 20, 1210–1215.

[10] T. Bartik, T. Himmler, H.-G. Schulte, K. Seevogel, J. Organomet.
Chem. 1984, 272, 29–41.

[11] S. Joerg, R. S. Drago, J. Sales, Organometallics 1998, 17, 589–599;
R. S. Drago, S. Joerg, J. Am. Chem. Soc. 1996, 118, 2654–2663.

[12] K. A. Bunten, L. Chen, A. L. Fernandez, A. J. PoZ, Coord. Chem.
Rev. 2002, 233–234, 41–51.

[13] T. L. Brown, Inorg. Chem. 1992, 31, 1286–1294.
[14] T. L. Brown, K. J. Lee, Coord. Chem. Rev. 1993, 128, 89–116.
[15] S. T. Howard, J. P. Foreman, P. G. Edwards, Inorg. Chem. 1996, 35,

5805–5812; S. T. Howard, J. A. Platts, J. Phys. Chem. 1995, 99,
9027–9033; W. E. Steinmetz, Quant. Struct. Act. Relat. 1996, 15, 1–
6; R. J. Bubel, W. Douglass, D. P. White, J. Comput. Chem. 2000, 21,
239–246; C. R. Landis, S. Feldgus, J. Uddin, C. E. Wozniak, K. G.
Moloy, Organometallics 2000, 19, 4878–4886; H. M. Senn, D. V.
Deubel, P. E. Blçchl, A. Togni, G. Frenking, J. Mol. Str. (Theochem)
2000, 506, 233–242; A. M. Gillespie, K. A. Pittard, T. R. Cundari,
D. P. White, Internet Electron. J. Mol. Des. 2002, 1, 242–251.

[16] L. Perrin, E. Clot, O. Eisenstein, J. Loch, R. H. Crabtree, Inorg.
Chem. 2001, 40, 5806–5811.

[17] G. Frenking, K. Wichmann, N. Frçhlich, J. Grobe, W. Golla, D. L.
Van, B. Krebs, M. L]ge, Organometallics 2002, 21, 2921–2930.

[18] C. H. Suresh, N. Koga, Inorg. Chem. 2002, 41, 1573–1578.
[19] H.-R. Bjørsvik, U. M. Hansen, R. Carlson, Acta Chem. Scand. 1997,

51, 733–741.
[20] O. K^hl, Coord. Chem. Rev. 2005, 249, 693–704.
[21] K. A. Bunten, D. H. Farrar, A. J. PoZ, Organometallics 2003, 22,

3448–3454.
[22] E. Burello, G. Rothenberg, Adv. Synth. Catal. 2003, 345, 1334–1340;

E. Burello, D. Farrusseng, G. Rothenberg, Adv. Synth. Catal. 2004,
346, 1844–1853; E. Burello, P. Marion, J.-C. Galland, A. Chamard,
G. Rothenberg, Adv. Synth. Catal. 2005, 347, 803–810.

[23] Schrçdinger Inc., Jaguar 4.0, Portland, Oregon, 2000 ; Schrçdinger
LLC, Jaguar 5.0, Portland, OR, 2002.

[24] J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 4, The
Self-Consistent Field for Molecules and Solids, McGraw-Hill, New
York, 1974 ; A. D. Becke, Phys. Rev. A 1988, 38, 3098–3100; J. P.
Perdew, A. Zunger, Phys. Rev. B 1981, 23, 5048–5079; J. P. Perdew,
Phys. Rev. B 1986, 34, 7406; J. P. Perdew, Phys. Rev. B 1986, 33,
8822–8824.

[25] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter,
J. A. Bohmann, C. M. Morales, F. Weinhold, NBO 5.0, Madison,
2001.

[26] SPSS Inc., SPSS for Windows Release 11.5, 233 S. Wacker Drive,
Chicago, Illinois 60606, 2002.

[27] R Development Core Team, R: A language and environment for
statistical computing, Vienna, Austria, 2004.

[28] J. N. Harvey, K. M. Heslop, A. G. Orpen, P. G. Pringle, Chem.
Commun. 2003, 278–279; K. M. Anderson, A. G. Orpen, Chem.
Commun. 2001, 2682–2683.

[29] M. Torrent, M. Sola, G. Frenking, Chem. Rev. 2000, 100, 439–493.
[30] A. M. Gillespie, G. R. Morello, D. P. White, Organometallics 2002,

21, 3913–3921; P. T. Olsen, F. Jensen, J. Chem. Phys. 2003, 118,
3523–3531; D. Balcells, G. Drudis-Sol_, M. Besora, N. Dçlker, G.
Ujaque, F. Maseras, A. Lled`s, Faraday Discuss. 2003, 124, 429–441.

[31] A. Bondi, J. Phys. Chem. 1964, 68, 441–451.
[32] P. Filzmoser, C. Croux, in Classification, Clustering and Data Analy-

sis (Eds.: K. Jajuga, A. Sokolowski, H.-H. Bock), Springer, Berlin,
2002, pp. 227–234; P. Geladi, Chemom. Intell. Lab. Syst. 2002, 60,
211–224.

[33] P. B. Dias, M. E. M. d. Piedade, J. A. M. Simaes, Coord. Chem. Rev.
1994, 135/136, 737–807.

[34] R. A. Baber, A. G. Orpen, P. G. Pringle, M. J. Wilkinson, R. L.
Wingad, Dalton Trans. 2005, 659–667.

[35] C. Chatfield, A. J. Collins, Introduction to Multivariate Analysis,
Chapman and Hall, London, 1980 ; J. Townend, Practical Statistics
for Environmental and Biological Scientists, Wiley, Chichester, 2002.

[36] D. Livingstone, Data Analysis for Chemists, Oxford University Press,
Oxford, 1995.

[37] R. A. Baber, M. L. Clarke, K. M. Heslop, A. C. Marr, A. G. Orpen,
P. G. Pringle, A. Ward, D. E. Zambrano-Williams, Dalton Trans.
2005, 1079–1085.

[38] M. Hubert, P. J. Rousseeuw, S. Varboven, Chemom. Intell. Lab. Syst.
2002, 60, 101–111; M. Hubert, S. Engelen, Bioinformatics 2004, 20,
1728–1736.

[39] T. R. Cundari, C. Sbrbu, H. F. Pop, J. Chem. Inf. Comput. Sci. 2002,
42, 1363–1369.

[40] D. M. Hawkins, S. C. Basak, D. Mills, J. Chem. Inf. Comput. Sci.
2003, 43, 579–586.

[41] D. M. Hawkins, J. Chem. Inf. Comput. Sci. 2004, 44, 1–12.
[42] J. Shao, J. Am. Stat. Assoc. 1993, 88, 486–494.
[43] J. Shao, J. Am. Stat. Assoc. 1996, 91, 655–665.
[44] R. A. Mansson, A. H. Welsh, N. Fey, A. G. Orpen, unpublished re-

sults. .

Received: July 27, 2005
Published online: November 9, 2005

www.chemeurj.org H 2006 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim Chem. Eur. J. 2006, 12, 291 – 302302

J. N. Harvey, A. G. Orpen et al.

www.chemeurj.org

